Reconstructing the thermal evolution of the CK chondrite parent body using Northwest Africa 5343, the least metamorphosed CK chondrite
Abstract
Carbonaceous chondrites (CCs) represent some of the most pristine solar system material, providing constraints on the early formation of planetesimals. The CK chondrites are the only group of CCs to exhibit the full range of thermal metamorphism (petrologic type 3 to 6). Most unequilibrated CK chondrites (CK3s) have been metamorphosed to petrologic subtype 3.8 or higher. However, homogeneity of olivine suggests that CK3 chondrite Northwest Africa (NWA) 5343 is less metamorphosed than the other CK3s. The presence of unrecrystallized matrix indicates that it is less than petrologic type 3.7. To better assess the lower limits of metamorphism on the CK chondrite parent body, we performed a detailed analysis of matrix material in NWA 5343. Ascertaining the lower limit of metamorphism in the CK chondrites is critical when addressing the CK-CV parent body debate (e.g., one vs. two parent bodies), and will shed light onto the evolution of metamorphosed CC parent bodies. We recognize two texturally distinct regions in the matrix of NWA 5343. Both have similar mineralogies (mostly olivine with lesser pyroxene and plagioclase), but differ in grain size, shape, and porosity. The porous region of the sample is characterized by subhedral-rounded olivine grains, typically < 40 µms, surrounded by empty pore space ( 10-14% porosity). Some small patches of matrix within the porous region contain angular olivine grains that are < 10 µms, similar to "clastic matrix" typically observed in some low petrologic type CCs and ordinary chondrites (OCs). In the glassy matrix region of NWA 5343 (3-7% porosity), olivine grains are larger (20-40 µms) and more anhedral. Skeletal pyroxene is also common. Original pore space is filled with a Ca-rich glass that appears to originate from an unusual vein in this region. Most interestingly, the extent of metamorphism varies within NWA 5343. Larger, anhedral olivine in the glassy region suggest that this region is more metamorphosed than the porous region. Even within the porous region there is a range of metamorphism, with small patches of granoblastic olivine intermixed with the clastic matrix. This suggests that NWA 5343 may represent a metamorphic breccia, a common occurrence in OCs and CCs of lower petrologic types, and provides insight into the evolution of the only completely metamorphosed CC parent body.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P51A2559D
- Keywords:
-
- 6024 Interiors;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES;
- 6040 Origin and evolution;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES;
- 5430 Interiors;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5455 Origin and evolution;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS