Lacustine conditions at Gale crater, Mars: A cold and wet hypothesis
Abstract
Sedimentary deposits observed by the Mars Science Laboratory (MSL) provide evidence that Gale crater may have intermittently hosted a fluvio-lacustine environment during the Hesperian. (Grotzinger et al., Science, 350 (6257). However, estimates of the CO2 content of the atmosphere derived from sedimentary environmental data measured by MSL are in the 10's mbar range, (Bristow et al, PNAS 114, No 9, (2166-2170), 2017). Surface pressures this low are unable to sustain warm enough temperatures to permit liquid lakes within Gale crater. Lake Untersee, Antarctica, however, is an interesting example of how an aqueous environment can be sustained in an perenially-covered lake for an extended period of time in a place where the daily average temperatures never reach 273K. Interestingly, Lake Untersee is not in equilibrium with the atmosphere but is instead supersatured in oxygen, in part because of an effective sealing action of the lake by the ice cover (Wand et al, Antarctic Science, 9 (43-45), 1997). Since this natural decoupling between the atmosphere and the lake's water provides an answer to the lack of carbonate precipitation in Gale's sediments, we have explored the possibility that lacustine conditions at Gale were preserved during the Hesperian in the form of ice covered lakes. Our calculations show that for certain range of conditions, a large body of water within Gale during the Hesperian will not freeze solid and geological features associated with aqueous environments may still be possible on a cold, yet wet planet. We find that for mean annual temperature of 245-255K ice thicknesses can be comparable values to the range of those for the Antarctic lakes (2-7m). The Antarctic lakes model is attractive as it relaxes the requirement for a long-lived active hydrological cycle involving rainfall and runoff, can explain the low abundance of carbonate in sediments, and the recently deduced redox stratification of the lake. However, it does require warmer temperatures than expected for an atmosphere with a weak greenhouse effect.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P33C2886K
- Keywords:
-
- 5405 Atmospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5415 Erosion and weathering;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5416 Glaciation;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5419 Hydrology and fluvial processes;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS