Expectations for Particulate Contamination Relevant to in Situ Atmospheric Sampling for Compositional Analysis at Uranus
Abstract
NASA and ESA are considering options for in situ science with atmospheric entry probes to the ice giants Uranus and Neptune. Nominal probe entry mass is in the 300-kg range, although a miniaturized secondary probe option is being studied in the 30-kg range. In all cases, compositional sampling would commence near the 100-mbar level at Uranus, after ejection of the heat shield and deployment of the descent parachute. In this presentation, I review existing literature on the composition, mass loading, and vertical distribution of condensed material that the probe may encounter. Sample inlets for measurement of the gas composition should be heated to avoid potential buildup of condensate, which would block the flow of atmospheric gas into composition sensors. Heating rate and temperature values -- sufficient to keep sample inlets clean under various assumptions -- will be presented. Three main types of condensed material will be considered: Stratospheric hydrocarbon ices: Solar UV photolyzes CH4, leading to the production of volatile hydrocarbons with higher C/H ratios. These species diffuse from their production regions into colder levels where the ices of C2H2, C2H6, and C4H2 condense. Some studies have also considered condensation of C3H8, C4H10, C6H6, and C6H2. Gunk: The hydrocarbon ices are thought to become polymerized due to irradiation from solar UV. The exact composition of the resulting gunk is not known. Solid-state photochemical processing may produce the traces of reddish (blue-absorbing) haze material, present in the troposphere at temperatures warm enough to sublimate the simple hydrocarbon ices. Tropospheric ices: In the region accessible to probes under study (P < 10 bar), much thicker condensation clouds may form from volatile gases CH4, NH3, and H2S. If large amounts of NH3 are sequestered in the deeper H2O liquid cloud, then the S/N ratio could exceed 1 in the probe-accessible region of the atmosphere, leading to NH4SH and H2S ices below the CH4-ice cloud deck. Otherwise, NH4SH and NH3 ices would be found. This work is supported by a grant from the NASA Planetary Science Deep Space Small Satellite Program to the Small Next-generation Atmospheric Probe (SNAP) mission concept study (PI: Kunio Sayanagi).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P31D2852W
- Keywords:
-
- 6207 Comparative planetology;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6255 Neptune;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6293 Uranus;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6297 Instruments and techniques;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS