Spectrophotometric Modeling of MAHLI Goniometer Observations
Abstract
The Mars Hand Lends Imager (MAHLI) on the Curiosity rover's robotic arm was used as a goniometer to acquire a multiple-viewpoint data set on sol 544 [1]. Images were acquired at 20 arm positions, all centered at the same location and from a near-constant distance of 1.0 m from the surface. Although this sequence was acquired at only one time of day ( 13:30 LTST), it provided phase angle coverage from 0-110°. Images were converted to radiance from calibrated PDS files (DRXX) using radiance scaling factors and MAHLI focus position counts in an algorithm that rescaled the data to match the Mastcam M-34 calibration via comparison of sky images acquired during the mission. Converted MAHLI radiance values from an image of the Mastcam calibration target compared favorably in the red, green, and blue Bayer filters to M-34 radiance values from an image of the same target taken minutes afterwards. The 20 MAHLI images allowed construction of a digital terrain model (DTM), although images with shadows cast by the rover arm were more challenging to include. Their current absence restricts the lowest phase angles available to about 17°. The DTM enables calculation of surface normals that can be used with sky models to correct for diffuse reflectance on surface facets prior to Hapke modeling [cf. 2-6]. Regions of interest (ROIs) were extracted using one of the low emission-angle images as a template. ROI unit types included soils, light-toned surfaces (5 cm felsic rock "Nita"), dark-toned rocks with variable textures and dust cover, and larger areas representative of the average surface (see attached figure). These ROIs were translated from the template image to the other images through a matching of DTM three-dimensional coordinates. Preliminary phase curves (prior to atmospheric correction) show that soil-dominated surfaces are most backscattering, whereas rocks are least backscattering, and light-toned surfaces exhibit wavelength-dependent scattering. Future work will include all images in the DTM and incorporate sky models to correct for diffuse skylight. [1] Johnson, J., et al. 8th Int. Conf. Mars, #1073, 2014; [2] Johnson, J., et al., LPSC, #1424, 2015; [3] Johnson, J., et al., AGU, #P43B-2125 2015; [4] Johnson, J., et al., JGR, 111, E02S14, 2006; [5] Johnson, J., JGR, 111, E12S16, 2006; [6] Johnson,J. et al., Icarus, 248, 25-71, 2015.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P31A2795L
- Keywords:
-
- 5215 Origin of life;
- PLANETARY SCIENCES: ASTROBIOLOGY;
- 6225 Mars;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 5455 Origin and evolution;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5470 Surface materials and properties;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS