Urbanization Effects on Floodplain Sediments in the Fourche Creek Wetlands in Little Rock, Arkansas, United States
Abstract
Jason Simmons and Laura S. Ruhl As Earth's population continues to grow, is it expected that by the year 2030, sixty percent of all people will be housed in urban cities. Although these urban areas are of the utmost importance socially, culturally and economically, they also have an adverse impact on the geochemical makeup of the natural landscape. Rapid urbanization has profound hydrological, chemical, physical, and ecological impacts on watersheds near urban areas. Trace metals, and other organic and inorganic contaminants from industrialization, car exhaust, overflow of sewage lines, and excess storm drain runoff are found in this surface water. In Little Rock, Arkansas, runoff from seventy-three percent of the city's surface area empties into Fourche Creek, then its urban wetlands, before it is further transported to the Arkansas River. Previous studies have revealed that the Fourche Creek wetlands mitigate flooding and remove contaminants from the water column. In this study, we examined the effects of urbanization by examining the geochemical makeup of the wetland sediment that drains most of Little Rock. Sediment samples were collected along transects of Fourche Creek at three locations, beginning at the water's edge and moving out distances between seventy to one hundred feet into the wetland. Sediments were dried, homogenized, and then sieved for grain size distribution. Leaching experiments were performed to determine the trace element concentration adsorbed to the surface, which could be easily mobilized. In these experiments, ultrapure deionized water and homogenized soil were combined in centrifuge tubes at a 10:1 liquid to solid ratio, and rotated for twenty-four hours allowing the mixture to properly combine and react. The leachate was filtered, then analyzed using Ion Chromatography (IC) to determine cations and anions, and ICPMS to determine trace metals present in the soil. Results were compiled, and a map was created showing grain sizes present, and metal distribution in the wetland soil. Results of this research were used to compare metal concentrations present in the Fourche Creek wetlands with those of a background non-urban soil, as well as determine the enrichment factors of those constituents related to anthropogenic activity (heavy metals).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51H1374S
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0461 Metals;
- BIOGEOSCIENCES;
- 1806 Chemistry of fresh water;
- HYDROLOGY;
- 1871 Surface water quality;
- HYDROLOGY