Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed
Abstract
Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H41C1454D
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCES;
- 1804 Catchment;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY