Quantification of Uncertainty in the Flood Frequency Analysis
Abstract
Flood frequency analysis (FFA) is usually carried out for planning and designing of water resources and hydraulic structures. Owing to the existence of variability in sample representation, selection of distribution and estimation of distribution parameters, the estimation of flood quantile has been always uncertain. Hence, suitable approaches must be developed to quantify the uncertainty in the form of prediction interval as an alternate to deterministic approach. The developed framework in the present study to include uncertainty in the FFA discusses a multi-objective optimization approach to construct the prediction interval using ensemble of flood quantile. Through this approach, an optimal variability of distribution parameters is identified to carry out FFA. To demonstrate the proposed approach, annual maximum flow data from two gauge stations (Bow river at Calgary and Banff, Canada) are used. The major focus of the present study was to evaluate the changes in magnitude of flood quantiles due to the recent extreme flood event occurred during the year 2013. In addition, the efficacy of the proposed method was further verified using standard bootstrap based sampling approaches and found that the proposed method is reliable in modeling extreme floods as compared to the bootstrap methods.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H31A1467K
- Keywords:
-
- 1817 Extreme events;
- HYDROLOGY;
- 1821 Floods;
- HYDROLOGY;
- 4321 Climate impact;
- NATURAL HAZARDS;
- 4343 Preparedness and planning;
- NATURAL HAZARDS