Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary
Abstract
Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H23D1727R
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0496 Water quality;
- BIOGEOSCIENCES;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1839 Hydrologic scaling;
- HYDROLOGY