The study of using earth tide response of groundwater level and rainfall recharge to identify groundwater aquifer
Abstract
Hydrogeological framework is the most important basis for groundwater analysis and simulation. Conventionally, the core drill is a most commonly adopted skill to acquire the core's data with the help of other research methods to artificially determine the result. Now, with the established groundwater station network, there are a lot of groundwater level information available. Groundwater level is an integrated presentation of the hydrogeological framework and the external pumping and recharge system. Therefore, how to identify the hydrogeological framework from a large number of groundwater level data is an important subject. In this study, the frequency analysis method and rainfall recharge mechanism were used to identify the aquifer where the groundwater level's response frequency and amplitude react to the earth tide. As the earth tide change originates from the gravity caused by the paths of sun and moon, it leads to soil stress and strain changes, which further affects the groundwater level. The scale of groundwater level's change varies with the influence of aquifer pressure systems such as confined or unconfined aquifers. This method has been applied to the identification of aquifers in the Cho-Shui River Alluvial Fan. The results of the identification are compared to the records of core drill and they both are quite consistent. It is shown that the identification methods developed in this study can considerably contribute to the identification of hydrogeological framework.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H21A1411H
- Keywords:
-
- 1805 Computational hydrology;
- HYDROLOGY;
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1832 Groundwater transport;
- HYDROLOGY;
- 1835 Hydrogeophysics;
- HYDROLOGY