Understanding the Effect of Biomineralization on Subsurface Injection Processes
Abstract
Microbial induced calcium carbonate precipitation (MICP) is a natural soil improvement technique. The calcium carbonate cementation increases the soil's shear strength, stiffness, and dilative tendencies; however, it may also reduce the permeability of the soil due to the reduction in pore space. Reduction in permeability can lead to an increase in treatment injection pressures or decrease in injection distance. Therefore, an investigation of the extent of permeability reduction is necessary to understand the effect on in situ injection procedures. A suite of soil column experiments were conducted on clean loose silica sand and loose silty sand (i.e., 15% non-plastic silt) by inducing MICP to incrementally higher levels of biomineralization (e.g., from an untreated state to a moderately cemented state for each soil type). The level of biomineralization was assessed using shear wave velocity measurements. Once the target levels of shear wave velocity were reached, the MICP treatments were terminated, and constant head permeability tests were conducted. The experimental results provided a relationship between permeability reduction and level of biomineralization. Upon completion of the permeability tests, the calcium carbonate minerals were evaluated with scanning electron microscopy and the distribution of cementation along the soil column height was assessed using gravimetric acid washing. The changes in permeability are upscaled towards in situ treatment by evaluating the resulting changes in allowable injection rate and radius of influence due to the MICP implementation by numerically modeling the groundwater flow using the finite element programs Seep/W and Sigma/W. The numerical results indicate the allowable injection rate and radius of influence are affected by both the reduction in permeability and the increase in stiffness from the MICP process. The injection simulations with clean sand indicate the reduction of permeability is overshadowed by the increase in stiffness of the material, and the allowable injection rate can increase as biomineralization occurs. However, the injection simulations with silty sand indicate the increase in stiffness compensates for the reduction in permeability, and allowable injection rate remains constant during the treatment.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H11L..06Z
- Keywords:
-
- 0419 Biomineralization;
- BIOGEOSCIENCES;
- 1828 Groundwater hydraulics;
- HYDROLOGY;
- 1832 Groundwater transport;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY