InSAR Analysis of Post-Seismic Deformation Following the 2013 Mw 7.7 Balochistan, Pakistan Earthquake
Abstract
On September 24th, 2013, a Mw 7.7 earthquake ruptured a 200 km portion of the Hoshab fault, a reverse fault in the Makran accretionary prism of southern Pakistan. This earthquake is notable because it ruptured a reverse fault with a predominantly strike-slip sense of displacement, and it ruptured a mechanically weak accretionary prism. Here, we present initial analysis of ongoing post-seismic deformation imaged with the Sentinel-1 interferometric synthetic aperture radar (InSAR) mission with the goals of a) determining the dominant post-seismic deformation processes active, b) characterizing the rigidity and rheological structure of a flat-slab subduction zone, and c) elucidating whether post-seismic deformation may account for or exacerbate the 4-6 m fault convergence deficit left by the 2013 earthquake. We first present InSAR time series analysis of the post-seismic transient derived from ongoing Sentinel-1 SAR acquisitions, including a comparison of atmosphere-corrected and uncorrected time series. Interferograms spanning December 2014 to the present reveal an ongoing post-seismic deformation transient in the region surrounding the Hoshab fault. Additionally, fault creep signals on and adjacent to the Hoshab fault are present. Second, we present a suite of forward models that explore the potential contributions of viscoelastic relaxation and frictional afterslip to the recorded displacement signal. These models, conducted using the semi-analytical solutions of RELAX and compared to InSAR line-of-sight time series displacements, explore a range of candidate rheological descriptions of the Makran subduction zone that are designed to probe the rheological structure of a region where current knowledge of the subsurface geology is highly limited. Our preliminary results suggest that post-seismic displacements arise from a combination of viscoelastic deformation and frictional afterslip, as opposed to one single mechanism. Additionally, our preliminary results suggest surface displacements are characterized by dominantly fault- parallel displacements, indicating that post-seismic deformation in the observed time period following the 2013 earthquake likely cannot account for the 4-6 m convergence deficit left by that earthquake.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.G43A0911P
- Keywords:
-
- 1207 Transient deformation;
- GEODESY AND GRAVITY;
- 1211 Non-tectonic deformation;
- GEODESY AND GRAVITY;
- 8159 Rheology: crust and lithosphere;
- TECTONOPHYSICS;
- 8163 Rheology and friction of fault zones;
- TECTONOPHYSICS