Joint Geodetic and Seismic Analysis of the effects of Englacial and Subglacial Hydraulics on Surface Crevassing near a Seasonal, Glacier-Dammed Lake on Gornergletscher, Switzerland
Abstract
Glacial outburst floods are difficult to predict and threaten human life and property near glaciated regions. These events are characterized by rapid draining of glacier-dammed lakes via the sub/englacial hydraulic network to the proglacial stream. The glacier-dammed lake on Gornergletscher in Switzerland, which fills and drains each summer, provides an opportunity to study this hazard. For three drainages (2004, 2006, and 2007), we track icequakes (IQ) and on-ice GPS movement. Our seasonal seismic networks had 8 - 24 three component stations and apertures of about 300 - 400 m on the glacier surface. The seasonal GPS arrays contained 4 - 8 GPS antennae on the glacier surface. Using Rayleigh wave coherence surface IQ location, we located 2924, 7822 and 3782 IQs, in 2004, 2006 and 2007, respectively. The GPS data were smoothed using a nonparametric protocol, with average station velocities of 10 - 90 mm/day. In 2006, strains were calculated using five stations within 500 m of the lake, co-located with the seismic network. IQ productivity increased substantially during lake drainage only in 2004, which was the only year when the lake drainage was rapid ( 6 days) and primarily subglacial. In 2006, there was no obvious increase in GPS speeds with slow ( 21 days), supraglacial lake drainage. However, when drainage was subglacial as in 2004 and 2007 (sub/englacial over 11 days), GPS speed increased up to 160%. This speed increase is evidence for basal sliding induced by subglacial drainage. In general, we find that when the strain increase on the principle extension axis aligns with the crevasse opening direction, IQ are more prolific. We also observe a diurnal signal in both IQ occurrence and surface strain, with peak strain occurring in the mid- to late-afternoon (15:00 - 19:00 local) across the study area in 2006. We interpret this time-shift in strain and spatiotemporal dependence of IQs to be caused by diurnal variations in melt-induced sliding. Our analysis sheds light on crevasse formation on short time scales where glacier flow is controlled by sliding variations in response to water input into the subglacial drainage system. Coupled seismic and GPS monitoring can thus make a key contribution to our understanding of brittle deformation and crevassing of glacier ice.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.C41D1265G
- Keywords:
-
- 0774 Dynamics;
- CRYOSPHERE;
- 0776 Glaciology;
- CRYOSPHERE;
- 7299 General or miscellaneous;
- SEISMOLOGY