Nitrogen and Phosphorous Flow in Atlantic Forest Covered Watersheds on the Oceanic and Continental Slopes at Serra dos Órgãos mountain, Southeast of Brazil
Abstract
Concentration of nutrients above natural levels are found even at remote or protected environments due to atmospheric transportation from biomass burning emissions, urban and industrial areas. This study evaluate N and P atmospheric deposition at the oceanic and continental slopes of Serra dos Órgãos mountain, which are influenced by the pollutants emission from the Metropolitan Region of Rio de Janeiro. Flux of dissolved forms of N and P were measured in three watersheds in headwaters of Piabanha basin, southeastern Brazil, to understand the dynamics of the biogeochemical processes of these elements, related to anthropic influences of atmospheric inputs and export via stream flow. Samples of bulk precipitation (weekly; n=47) and stream water (monthly; n=13) were collected along one year (Sept 2014 - Sept 2015). During that period the annual rainfall in the oceanic slope (2163 mm) was the double of the continental one. It is important to stress that the rainfall in the oceanic slope was 13 % and 28% in 2014/15, respectively, lower than the long term average. Atmospheric deposition of total dissolved nitrogen (TDN) on the oceanic and continental slopes were, respectively, 15 and 8.6 kg N ha-1 year-1. The TDN outputs by stream water were 5-7 times lower in oceanic slope and 28 times lower on the continental one. The relative contribution of dissolved organic nitrogen (DON; 65%-70%) was higher than the one of dissolved inorganic nitrogen (DIN; 30-35%) to TDN deposition. Atmospheric deposition of total dissolved phosphorus (TDP) in oceanic and continental slopes were 1.4 and 0.95 kg P ha-1 year-1. Dissolved Organic Phosphorus (DOP; 89-96%) was higher than the inorganic one (PO43-; 5-11%). TDP outputs were 2-4 times lower, regarding to atmospheric contribution. The contribution of DOP (73-77 %) was higher than DIP (23-27 %). Results show variations in quantities and forms of N and P species due to natural and anthropogenic processes which contribute to the cycling of these elements in the Serra dos Órgãos. TDN atmospheric contribution on oceanic slope, as well as the DON/DIN ratio, was higher than found on previous studies on the same area.The differences between inputs and outputs of N and P balance can be attributed to factors, including biogeochemical and physical processes, and to an underestimation of stream flows in annual scale.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B43B2119V
- Keywords:
-
- 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCES;
- 0496 Water quality;
- BIOGEOSCIENCES;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE;
- 1806 Chemistry of fresh water;
- HYDROLOGY