Fire Effects on Greenhouse Gas Emissions from Wetlands in the Yukon-Kuskokwim Delta, Alaska
Abstract
Climate change in increasing both fire frequency and fire intensity, especially in Arctic regions. Fire often leads to increased soil temperature, which increases the likelihood of permafrost thaw. Permafrost soils in northern latitudes store large amounts of carbon, and thawing of this permafrost will alter carbon cycling processes, which may substantially impact ecosystem processes in aquatic ecosystems. One potential consequence of altered aquatic ecosystem processes is changes in carbon emissions resulting from altered carbon inputs from thawing permafrost. Aquatic ecosystems are known to be hotspots of greenhouse gas emissions, so changes in greenhouse gas fluxes from them may have important impacts on global climate. In this work, we focused on CO2 and CH4 fluxes from peat plateau ponds, fens and bogs in the Yukon-Kuskokwim (YK) Delta in southwest Alaska. The YK Delta experienced unprecedented fires in summer 2015, presenting an opportunity to assess the impacts of fire on greenhouse gas fluxes from aquatic ecosystems. We sampled upland ponds, channel fens, bogs, and lowland ponds in sites that had burned in 2015 as well as from similar sites where there have been no recorded fires in the past 75 years. We found little difference in gas flux between aquatic sites in burned and unburned sites, with the exception of channel fens, which showed substantially higher fluxes of both CH4 and CO2 in burned sites. This is in contrast to similar measurements taken in summer 2016, when burned ponds showed consistently higher GHG fluxes, suggesting these increases were not sustained in sites other than channel fens. These results, if general, indicate the possibility that the response of aquatic ecosystems to fire may lead to positive feedbacks on climate change.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B41I2085P
- Keywords:
-
- 0428 Carbon cycling;
- BIOGEOSCIENCES;
- 0486 Soils/pedology;
- BIOGEOSCIENCES;
- 0702 Permafrost;
- CRYOSPHERE;
- 1615 Biogeochemical cycles;
- processes;
- and modeling;
- GLOBAL CHANGE