Comparison and Correlation of Subsurface Media Properties Reflected in Both Extracted Soil Pore Water From Sectioned Cores and Homogenized Groundwater From Monitoring Wells
Abstract
Conventional monitoring wells have produced useful long-term data about the contaminants, carbon flux, microbial population and their evolution. The averaged homogenized groundwater matrix from these wells is insufficient to represent all media properties in subsurface. This pilot study investigated the solid, liquid and gas phases from soil core samples from both uncontaminated and contaminated areas of the ENIGMA field research site at Oak Ridge, Tennessee. We focused on a site-specific assessment with depth perspective that included soil structure, soil minerals, major and trace elements and biomass for the solid phase; centrifuged soil pore water including cations, anions, organic acid, pH and conductivity for the liquid phase; and gas (CO2, CH4, N2O) evolution over a 4 week incubation with soil and unfiltered groundwater. Pore water from soil core sections showed a correlation between contamination levels with depth and the potential abundance of sulfate- and nitrate-reducing bacteria based on the 2-order of magnitude decreased concentration. A merged interpretation with mineralogical consideration revealed a more complicated correlation among contaminants, soil texture, clay minerals, groundwater levels, and biomass. This sampling campaign emphasized that subsurface microbial activity and metabolic reactions can be influenced by a variety of factors but can be understood by considering the influence of multiple geochemical factors from all subsurface phases including water, air, and solid along depth rather than homogenized groundwater.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B41D1988M
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0463 Microbe/mineral interactions;
- BIOGEOSCIENCES;
- 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCES;
- 1055 Organic and biogenic geochemistry;
- GEOCHEMISTRY