Spatiotemporal distribution and variation of GPP in the Greater Khingan Mountains from 1982 to 2015
Abstract
GPP (Gross Primary Productivity) is an important index to reflect the productivity of plants because it refers to the organic accumulated by green plants on land through assimilating the carbon dioxide in the atmosphere by photosynthesis and a serial of physiological processes in plants. Therefore, GPP plays a significant role in studying the carbon sink of terrestrial ecosystem and plants' reaction to global climate change. Remote sensing provides an efficient way to estimate GPP at regional and global scales and its products can be used to monitor the spatiotemporal variation of terrestrial ecosystem.As the Greater Khingan Mountains is the only bright coniferous forest of cool temperate zone in China and accounts for about 30% of the forest in China. This region is sensitive to climate change, but its forest coverage presented a significant variation due to fire disasters, excessive deforestation and so on. Here, we aimed at studying the variation pattern of GPP in the Greater Khingan Mountains and further found impact factors for the change in order to improve the understanding of what have and will happen on plants and carbon cycle under climate change.Based on GPP product from the GLASS program, we first studied spatial distribution of plants in the Greater Khingan Mountains from 1982 to 2015. With a linear regression model, seasonal and inter-annual GPP variability were explored on pixel and regional scale. We analyzed some climatic factors (e.g. temperature and precipitation) and terrain in order to find the driven factors for the GPP variations. The Growing Season Length (GSL) was also regarded as a factor and was retrieved from GIMMS 3g NDVI datasets using dynamic threshold method. We found that GPP in study area linearly decreased with the increasing elevation. Both annual accumulated GPP (AAG) and maximum daily GPP (during mid-June to mid-July) gained obvious improvement over the past 34 years under climate warming and drying (Fig.1 and Fig.2). Further studies showed temperature had positive correlation with GPP while precipitation had negative effect; Moreover, multi-regression results reflected that temperature rather than precipitation was the dominant climatic factor for plants in study area. The extension of GSL also increased the AAG.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B33B2088H
- Keywords:
-
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0480 Remote sensing;
- BIOGEOSCIENCES;
- 1630 Impacts of global change;
- GLOBAL CHANGE;
- 1632 Land cover change;
- GLOBAL CHANGE