Spatially and seasonally asymmetric responses of Amazon forests to El Niño
Abstract
El Niño Southern Oscillation (ENSO) events impose strong inter-annual signals on local climate changes and terrestrial ecosystem dynamics in many regions on the Earth especially tropical forests in the Amazon basin. However, much is still unknown regarding the vulnerability of tropical forests to ENSO effects, especially in a spatially-explicit context. Here, using satellite and ground observations with reanalysis data of climate variables, we analyzed the spatial and temporal patterns of plant growth in response to the warm phase of ENSO (i.e., El Niño), which resulted in precipitation anomaly (or drought) over a large area across the Amazon. We found that the influence of El Niño events on vegetation growth varied spatially and seasonally. During each season (dry or wet), the forests were divided into two sub-regions that were either controlled by precipitation or radiation. The boundaries between the two sub-regions were determined, which were distributed from northwest to southeast in the dry season and from northeast to southwest in the wet season. This result improves our understanding of the water and energy availability co-modulating the vegetation growth in Amazonia and the magnitude and direction of Amazon forests responding to drought.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.B21G2045M
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0426 Biosphere/atmosphere interactions;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 0476 Plant ecology;
- BIOGEOSCIENCES