Winter Storm Jupiter of January 2017: Meteorological Drivers, Synoptic Evolution, and Climate Change Considerations in Portland, Oregon
Abstract
Although the Pacific Northwest has some of the highest wintertime precipitation in the United States, most urban areas receive little in the way of snow. While 37 inches of wintertime rain fall in Portland on average annually, the city only receives four inches of snow on average. Although wintertime extreme snowstorm events are rare in Portland, in the last century they have occurred about once every ten years. On January 10-12th, 2017, winter storm Jupiter brought 11 inches of snow to downtown Portland within a 12-hour period, making it the largest snowstorm for the city in twenty years. The city declared a state of emergency, over 30,000 citizens lost power, and thousands of businesses were forced to shut down. The anomalously cold air and high amounts of snowfall in a short amount of time made the storm different from others in recent years. This study aims to discover the meteorological drivers behind the January 2017 snowstorm in Portland, Oregon. We also aim to understand how this storm compared with other local storms in the past, and assess the likelihood of a similar event occurring in the future. To do this, reanalysis data were used to display the synoptic evolution of the January 2017 storm. We compared this storm with two other extreme snowfall events from December 2008 and January 1980, assessing meteorological similarities and differences between storms. Results show that the 2017 event was associated with a slow moving, strong low-pressure system accompanied by a 500 hPa trough. These large-scale features helped drive slow moving, locally heavy snow bands over the city of Portland. At the same time, an unusually strong Arctic high-pressure system moved into the interior Pacific Northwest allowing for strong cold air advection west through the Cascade Mountain Range and Columbia River Gorge. Temperature trends show warming of 1-2 °C in the Pacific Northwest since the middle of the last century. Because of this, uncertainty associated with occurrence and magnitude of extreme snowfall events with respect to climate change must also be assessed. Understanding essential questions about the synoptic evolution of extreme snowfall events will better equip meteorologists and city planners to understand how this event occurred, and what to look for to better prepare Pacific Northwest cities for future storms.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A53C2261D
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3329 Mesoscale meteorology;
- ATMOSPHERIC PROCESSES;
- 3372 Tropical cyclones;
- ATMOSPHERIC PROCESSES;
- 4313 Extreme events;
- NATURAL HAZARDS