Airborne Deployment of a High Resolution PTR-ToF-MS to Characterize Non-methane Organic Gases in Wildfire Smoke: A Pilot Study During WE-CAN Test Flights
Abstract
Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A43E2499P
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0360 Radiation: transmission and scattering;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0368 Troposphere: constituent transport and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE