Using Fluid Dynamics and Field Experiments to Improve Vehicle-based Wind Measurements for Environmental Monitoring
Abstract
Vehicle-based measurements of wind speed and direction are presently used for a range of applications, including gas plume detection. Theoretically, vehicle-based measurements could also be integrated with fixed-site measurements to add spatial richness in weather and atmospheric observing systems, but the quality and accuracy of such measurements is currently not well understood. Our research objective for this field-simulation study was to understand how anemometer placement and the vehicle's external air flow field affect measurement accuracy of vehicle-mounted anemometers. We used a truck-mounted anemometer to investigate wind measurements at different vehicle speeds and anemometer placements. We conducted field tests on a square 3.2 km route in flat, treeless terrain and positioned stationary sonic anemometers at each corner. We drove the route in replicate under varying wind conditions and vehicle speeds, and with multiple sonic anemometer placements on the vehicle. The vehicle-based anemometer measurements were corrected to remove the vehicle speed and course vector. In the lab, Computational Fluid Dynamic (CFD) simulations were generated in Ansys FLUENT to model the external flow fields at the locations of measurement under varying vehicle speed and yaw angle. In field trials we observed that vehicle-based measurements differed from stationary measurements by a different magnitude in each of the upwind, downwind and crosswind directions. The difference from stationary anemometers increased with vehicle speed, suggesting the vehicle's flow field does indeed impact the accuracy of vehicle-based anemometer measurements. We used the CFD simulations to develop a quantitative understanding of fluid flow around the vehicle, and to develop speed-based corrections that were applied to the field data. We were also able to make recommendations for anemometer placement. This study demonstrates the importance of applying aerodynamics-based correction factors to vehicle based wind measurements.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A41A2247H
- Keywords:
-
- 0305 Aerosols and particles;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0394 Instruments and techniques;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0399 General or miscellaneous;
- ATMOSPHERIC COMPOSITION AND STRUCTURE