GHGSat-D: Greenhouse gas plume imaging and quantification from space using a Fabry-Perot imaging spectrometer
Abstract
GHGSat, Inc. has launched the first satellite designed to detect and quantify greenhouse gas emissions from individual industrial sites. Our demonstration satellite GHGSat-D or "CLAIRE" was launched in June 2016. It weighs less than 15 kg and its primary instrument is a miniaturized Fabry-Perot imaging spectrometer with spectral resolution on the order of 0.1 nm. The spectral bandpass is 1635-1670 nm, giving the instrument access to absorption bands of both CO2 and CH4. Our system is based on targeted observations rather than global coverage, and our spatial imaging resolution is a key differentiator. Specifically, with a ground sampling distance of <50 m within a 12 km field of view, we are able to spatially resolve the increased column densities associated with individual emission plumes. For a given emission rate and wind speed the magnitude of the local excess column increases approximately linearly as pixel resolution decreases. Consequently, at GHGSat's resolution the total column can exceed local background by well over 10% for many industrial sites with strong but realistic emission rates. GHGSat uses a novel measurement and retrievals concept where the emitter site of interest is captured in a sequence of 150-200 overlapping two-dimensional images. The combined effect of the Fabry-Perot resonator and the scrolling scene gives a different spectral sampling of each surface location in every image. While our data processing toolchain does not produce a conventional hyperspectral dataset, it does yield a spectral decomposition of the spatially resolved signal that is compared to a model that includes atmospheric radiative transfer and the instrument's pixel-dependent spectral responsivity. Our presentation will describe the instrument design, concept of operations and retrievals approach. We will also present images and results from GHGSat-D at different processing levels, including high-resolution column density retrievals. An observation of the degassing flux of methane from the outlet of a recently impounded hydroelectric reservoir will be shown as an example. Finally we discuss some performance limitations of GHGSat-D and our plans to overcome them as we update the instrument design for the next satellites.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A33G2450M
- Keywords:
-
- 0325 Evolution of the atmosphere;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 1610 Atmosphere;
- GLOBAL CHANGE;
- 1626 Global climate models;
- GLOBAL CHANGE;
- 1640 Remote sensing;
- GLOBAL CHANGE