The Strength of Cloud Feedbacks and the Structure of Tropical Climate Change - A CESM Sensitivity Study
Abstract
The nature of local coupled ocean-atmosphere interactions within the tropics is determined by background conditions such as the depth of the equatorial thermocline, the water vapor content of the tropical atmosphere, and the radiative forcing of tropical clouds. These factors are set not only by the coupled tropical variability itself but also by extra-tropical conditions. For example, the strength of the cold tongue is ultimately controlled by the temperature of waters subducted in the extra-tropics and transported to the equator by the ocean subtropical cells (STCs). Similarly, inter-hemispheric asymmetries in extra-tropical atmospheric heating are communicated to the tropics affecting cross-equatorial heat transport and ITCZ position. Acknowledging from a fully coupled perspective the influence of both tropical and extra-tropical conditions, we are performing a suite of CESM experiments across which we systematically alter the strength of convective and stratus cloud feedbacks. By systematically exploring the sensitivity of the tropical coupled system to imposed changes in the strength of tropical and extra-tropical cloud feedbacks to CO2-induced warming this work aims to formalize our understanding of cloud controls on tropical climate.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A13C2084E
- Keywords:
-
- 0321 Cloud/radiation interaction;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSES;
- 3319 General circulation;
- ATMOSPHERIC PROCESSES;
- 3373 Tropical dynamics;
- ATMOSPHERIC PROCESSES