An Evaluation of C1-C3 Hydrochlorofluorocarbon (HCFC) Metrics: Lifetimes, Ozone Depletion Potentials, Radiative Efficiencies, Global Warming and Global Temperature Potentials
Abstract
Hydrochlorofluorocarbons (HCFCs) have been used as chlorofluorocarbon (CFC) substitutes in a number of applications, e.g. refrigerator and air-conditioning systems. Although HCFCs have lower ozone-depletion potentials (ODPs) compared to CFCs, they are potent greenhouse gases. The twenty-eighth meeting of the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali, 2016) included a list of 274 HCFCs to be controlled under the Montreal Protocol. However, from this list, only 15 of the HCFCs have values for their atmospheric lifetime, ODP, global warming potential (GWP), and global temperature potential (GTP) that are based on fundamental experimental studies, while 48 are registered compounds. In this work, we present a comprehensive evaluation of the atmospheric lifetimes, ODPs, radiative efficiencies (REs), GWPs, and GTPs for all 274 HCFCs to be included in the Montreal Protocol. Atmospheric lifetimes were estimated based on HCFC reactivity with OH radicals and O(1D), as well as their removal by UV photolysis using structure activity relationships and reactivity trends. ODP values are based on the semi-empirical approach described in the WMO/UNEP ozone assessment. Radiative efficiencies were estimated, based on infrared spectra calculated using theoretical electronic structure methods (Gaussian 09). GWPs and GTPs were calculated relative to CO2 using our estimated atmospheric lifetimes and REs. The details of the methodology will be discussed as well as the associated uncertainties. This study has provided a consistent set of atmospheric metrics for a wide range of HCFCs that support future policy decisions. More accurate metrics for a specific HCFC, if desired, would require fundamental laboratory studies to better define the OH reactivity and infrared absorption spectrum of the compound of interest. Overall, HCFCs within the same family (isomers) show a large ODP, GWP, GTP dependence on the molecular geometry of the isomers. The atmospheric lifetime of HCFCs is predominantly determined by reaction with the OH radical, with photolysis making only a minor contribution for long-lived highly chlorinated compounds. RE values are within the 0.05 and 0.3 W m-2 ppb-1 range with highly fluorinated HCFCs having the largest RE values.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.A11H1962B
- Keywords:
-
- 0317 Chemical kinetic and photochemical properties;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0340 Middle atmosphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0365 Troposphere: composition and chemistry;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 0394 Instruments and techniques;
- ATMOSPHERIC COMPOSITION AND STRUCTURE