Comparing the effects of supernovae feedback models on the interstellar medium
Abstract
Stellar feedback affects the state of the interstellar medium and plays an important role in the formation of galaxies. However, different ways of modeling that feedback lead to different galaxy morphologies even when using the same initial conditions. We investigated the differences between two models of supernovae feedback, blastwave feedback and superbubble feedback, using a smoothed particle hydrodynamics code to simulate the formation of an isolated galaxy. The two feedback models were compared across three different models of the ISM: primordial cooling, metal-line cooling, and metal-line cooling in addition to molecular hydrogen. The simulations run with metal-line cooling indicate that superbubble feedback creates a greater amount of high-density gas than blastwave feedback does while also regulating star formation more efficiently. Galaxies produced with metal-line cooling or H2 physics created cold, dense gas, and the increased cooling efficiency was also linked to more pronounced spiral structure.
- Publication:
-
American Astronomical Society Meeting Abstracts #229
- Pub Date:
- January 2017
- Bibcode:
- 2017AAS...22934753B