Radiative Transfer Modeling of the Mid-IR/Far-IR Dust Emissions of the Symbiotic Mira, V* R Aqr
Abstract
We present RADMC-3D models of the symbiotic system V* R Aqr, which consists of a Mira variable and white dwarf. Thermal radiative transfer modeling is performed using RADMC-3D to characterize the mid-IR/far-IR Spectral Energy Distributions (SEDs) of the system at two different phases of the visible light curve. Near maximum visible light (Mira phase of 1.0), we utilize the Infrared Space Observatory (ISO) Short Wave Spectrometer/Long Wave Spectrometer observations (2.3 - 197 mu-m) and contrast them to the recently obtained near minimum visible light (~0.4 Mira phase) observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA)/Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) (6.4 - 37.1 mu-m). Initial spectra and photometry from the SOFIA/FORCAST observations of the central Mira indicate that flux values are about 50% of that measured by the ISO SWS/LWS observations. Dust models utilizing a spherical shell and amorphous silicates are used to generate synthetic SEDs, which are compared with the ISO and FORCAST observations in order to constrain the properties of the shell (such as its dust mass and temperature) at different phases of the Mira variability. Our proposed monitoring of the V* R Aqr system will establish a characterization baseline of the SEDs as the system approaches its upcoming eclipse and periastron passage.
- Publication:
-
American Astronomical Society Meeting Abstracts #229
- Pub Date:
- January 2017
- Bibcode:
- 2017AAS...22915212O