Characterization of CMO via compactness of the commutators of bilinear fractional integral operators
Abstract
Let $I_{\alpha}$ be the bilinear fractional integral operator, $B_{\alpha}$ be a more singular family of bilinear fractional integral operators and $\vec{b}=(b,b)$. Bényi et al. in \cite{B1} showed that if $b\in {\rm CMO}$, the {\rm BMO}-closure of $C^{\infty}_{c}(\mathbb{R}^n)$, the commutator $[b,B_{\alpha}]_{i}(i=1,2)$ is a separately compact operator. In this paper, it is proved that $b\in {\rm CMO}$ is necessary for $[b,B_{\alpha}]_{i}(i=1,2)$ is a compact operator. Also, the authors characterize the compactness of the {\bf iterated} commutator $[\Pi\vec{b},I_{\alpha}]$ of bilinear fractional integral operator. More precisely, the commutator $[\Pi\vec{b},I_{\alpha}]$ is a compact operator if and only if $b\in {\rm CMO}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2016
- DOI:
- 10.48550/arXiv.1612.01116
- arXiv:
- arXiv:1612.01116
- Bibcode:
- 2016arXiv161201116W
- Keywords:
-
- Mathematics - Functional Analysis
- E-Print:
- 19 pages