Boundary interpolation by finite Blaschke products
Abstract
Given $n$ distinct points $t_1,\ldots,t_n$ on the unit circle $\T$ and equally many target values $\f_1,\ldots,\f_n\in\T$, we describe all Blaschke products $f$ of degree at most $n-1$ such that $f(t_i)=\f_i$ for $i=1,\ldots,n$. We also describe the cases where degree $n-1$ is the minimal possible.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2016
- DOI:
- arXiv:
- arXiv:1609.09843
- Bibcode:
- 2016arXiv160909843B
- Keywords:
-
- Mathematics - Complex Variables