Riemann-Hilbert correspondence for mixed twistor D-Modules
Abstract
We introduce the notion of regularity for a relative holonomic $\mathcal D$-module in the sense of arXiv:1204.1331. We prove that the solution functor from the bounded derived category of regular relative holonomic modules to that of relative constructible complexes is essentially surjective by constructing a right quasi-inverse functor. When restricted to relative $\mathcal D$-modules underlying a regular mixed twistor $\mathcal D$-module, this functor satisfies the left quasi-inverse property.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2016
- DOI:
- arXiv:
- arXiv:1609.04192
- Bibcode:
- 2016arXiv160904192M
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Complex Variables;
- 14F10;
- 32C38;
- 32S40;
- 32S60;
- 35Nxx;
- 58J10
- E-Print:
- 36 pages. V2: 40 pages, statement of Theorem 5 corrected, a correction in the proof of Lemma 3.15, presentation improved with more introductory material