Ca II 854.2 nm Spectromagnetograms: A Powerful Chromospheric Diagnostic
Abstract
The transition from physical dominance by plasma flows in the photosphere to magnetic pressure in the solar chromosphere motivates as many diagnostic observations as possible across this important region. Among the few ground-accessible spectral lines formed within the chromosphere, the Ca II 854.2 nm line has the desirable properties of presence everywhere on the solar disk, Zeeman sensitivity, and narrow line width. Mapped observations of circular polarization within this line (spectromagnetograms) have been made at NSO infrequently since 1974, with regular daily full-disk observations starting in August 1996. Full-disk spectral observations of the complete Stokes polarization vector are now being made regularly since November 2015. It is not easy to estimate chromospheric magnetic field properties from the 854.2 nm line profile polarization. To provide rough quick-look vector field maps we found that the weak-field approximation provides a fair first estimate of the line-of-sight component but appears to be too simple to interpret the transverse magnetic field from frequently asymmetric, linearly-polarized line profiles. More realistic estimates of the chromospheric vector field, short of extremely lengthy, full 3D, non-local radiative transfer inversions, are being investigated. We briefly introduce recent instrumental modifications and observational characteristics, sample observations, and results concerning the expansion of the chromospheric field with increasing height, the presence of large areas of weak, nearly horizontal fields, and field estimates in plages, sunspots, flares, filaments, and filament channels. The Stokes spectra will be freely available to the community.This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation.
- Publication:
-
AAS/Solar Physics Division Abstracts #47
- Pub Date:
- May 2016
- Bibcode:
- 2016SPD....4710106H