Dichroic atomic vapor laser lock with multi-gigahertz stabilization range
Abstract
A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the 85Rb ground state or as far as 16 GHz away from the closest optical transition.
- Publication:
-
Review of Scientific Instruments
- Pub Date:
- June 2016
- DOI:
- 10.1063/1.4952962
- arXiv:
- arXiv:1512.08919
- Bibcode:
- 2016RScI...87f3107P
- Keywords:
-
- Physics - Instrumentation and Detectors;
- Physics - Atomic Physics;
- Physics - Optics
- E-Print:
- 11 pages, 7 figures. Published in Review of Scientific Instruments 2016