Pre-reheating magnetogenesis in the kinetic coupling model
Abstract
Recent blazar observations provide growing evidence for the presence of magnetic fields in the extragalactic regions. While natural speculation is to associate the production with inflationary physics, it is known that magnetogenesis solely from inflation is quite challenging. We therefore study a model in which a noninflaton field χ coupled to the electromagnetic field through its kinetic term, -I2(χ )F2/4 , continues to move after inflation until the completion of reheating. This leads to a postinflationary amplification of the electromagnetic field. We compute all the relevant contributions to the curvature perturbation, including gravitational interactions, and impose the constraints from the CMB scalar fluctuations on the strength of magnetic fields. We, for the first time, explicitly verify both the backreaction and CMB constraints in a simple yet successful magnetogenesis scenario without invoking a dedicated low-scale inflationary model in the weak-coupling regime of the kinetic coupling model.
- Publication:
-
Physical Review D
- Pub Date:
- August 2016
- DOI:
- arXiv:
- arXiv:1602.05673
- Bibcode:
- 2016PhRvD..94d3523F
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- High Energy Physics - Phenomenology
- E-Print:
- 18 pages + 13 pages of appendices and references, 8 figures