Electronic and optical properties of K-doped ZnO: Ab initio study
Abstract
We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.
- Publication:
-
Modern Physics Letters B
- Pub Date:
- August 2016
- DOI:
- 10.1142/S0217984916502912
- Bibcode:
- 2016MPLB...3050291A
- Keywords:
-
- FP-LAPW;
- ZnO:K;
- optical properties;
- optoelectronics