A population of short-period variable quasars from PTF as supermassive black hole binary candidates
Abstract
Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circum-binary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35 383 spectroscopically confirmed quasars in the photometric data base of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modelling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey. Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q ≡ M2/M1 ≈ 0.01.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- December 2016
- DOI:
- arXiv:
- arXiv:1604.01020
- Bibcode:
- 2016MNRAS.463.2145C
- Keywords:
-
- quasars: supermassive black holes;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- MNRAS (accepted), new section 4.7