On the physical origin of galactic conformity
Abstract
Correlations between the star formation rates (SFRs) of nearby galaxies (so-called galactic conformity) have been observed for projected separations up to 4 Mpc, an effect not predicted by current semi-analytic models. We investigate correlations between the mass accretion rates (dMvir/dt) of nearby haloes as a potential physical origin for this effect. We find that pairs of host haloes `know about' each others' assembly histories even when their present-day separation is greater than thirty times the virial radius of either halo. These distances are far too large for direct interaction between the haloes to explain the correlation in their dMvir/dt. Instead, halo pairs at these distances reside in the same large-scale tidal environment, which regulates dMvir/dt for both haloes. Larger haloes are less affected by external forces, which naturally gives rise to a mass dependence of the halo conformity signal. SDSS measurements of galactic conformity exhibit a qualitatively similar dependence on stellar mass, including how the signal varies with distance. Based on the expectation that halo accretion and galaxy SFR are correlated, we predict the scale-, mass- and redshift-dependence of large-scale galactic conformity, finding that the signal should drop to undetectable levels by z ≳ 1. These predictions are testable with current surveys to z ∼ 1; confirmation would establish a strong correlation between dark matter halo accretion rate and central galaxy SFR.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- September 2016
- DOI:
- 10.1093/mnras/stw1462
- arXiv:
- arXiv:1504.05578
- Bibcode:
- 2016MNRAS.461.2135H
- Keywords:
-
- galaxies: evolution;
- galaxies: haloes;
- cosmology: theory;
- dark matter;
- large-scale structure of Universe;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 13 pages, 10 figures, submitted to MNRAS. Figure 3 shows a cartoon illustration of the paper's thesis. Figure 4 presents the main result