Controlling and tracking of colloidal nanostructures through two-photon fluorescence
Abstract
Multiphoton absorbing dye-coated trapped spherical bead at the focal plane of femtosecond optical tweezers shows nonlinear optical (NLO) phenomena. One such NLO process of two-photon fluorescence (TPF) has been used for the background-free imaging of a femtosecond laser-trapping event. Due to the high peak powers of femtosecond laser pulses with low average powers, it is possible to not only trap single nanospheres, but encourage optically directed self-assembly. The TPF signatures of trapped particles show evidence of such a directed self-assembly process which, in turn, can provide information about the structural dynamics during the process of cluster formation. We are able to trap and characterize structure and dynamics in 3D until pentamer formation from the decay characteristics of trapping at the focal plane.
- Publication:
-
Methods and Applications in Fluorescence
- Pub Date:
- December 2016
- DOI:
- Bibcode:
- 2016MApFl...4d4004M