The Chelyabinsk event
Abstract
On February 15, 2013, 3:20 UT, an asteroid of the size of about 19 meters and mass of 12,000 metric tons entered the Earth's atmosphere unexpectedly near the border of Kazakhstan and Russia. It was the largest confirmed Earth impactor since the Tunguska event in 1908. The body moved approximately westwards with a speed of 19 km s-1, on a trajectory inclined 18 degrees to the surface, creating a fireball of steadily increasing brightness. Eleven seconds after the first sightings, the fireball reached its maximum brightness. At that point, it was located less than 40 km south from Chelyabinsk, a Russian city of population more than one million, at an altitude of 30 km. For people directly underneath, the fireball was 30 times brighter than the Sun. The cosmic body disrupted into fragments; the largest of them was visible for another five seconds before it disappeared at an altitude of 12.5 km, when it was decelerated to 3 km s-1. Fifty six second later, that ~600 kg fragment landed in Lake Chebarkul and created a 8 m wide hole in the ice. Small meteorites landed in an area 80 km long and several km wide and caused no damage. The meteorites were classified as LL ordinary chondrites and were interesting by the presence of two phases, light and dark. More material remained, however, in the atmosphere forming a dust trail up to 2 km wide and extending along the fireball trajectory from altitude 18 to 70 km. The dust then circled the Earth within few days and formed a ring around the northern hemisphere. In Chelyabinsk and its surroundings a very strong blast wave arrived 90 - 150 s after the fireball passage (depending on location). The wave was produced by the supersonic flight of the body and broke ~10% of windows in Chelyabinsk (~40% of buildings were affected). More than 1600 people were injured, mostly from broken glass. The whole event was well documented by video cameras, seismic and infrasonic records, and satellite observations. The total energy was 500 kT TNT (2 × 1015 J).
- Publication:
-
IAU Focus Meeting
- Pub Date:
- October 2016
- DOI:
- Bibcode:
- 2016IAUFM..29A.247B
- Keywords:
-
- Meteors;
- Meteoroids;
- Asteroids