Observational Evidence of Dynamic Star Formation Rate in Milky Way Giant Molecular Clouds
Abstract
Star formation on galactic scales is known to be a slow process, but whether it is slow on smaller scales is uncertain. We cross-correlate 5469 giant molecular clouds (GMCs) from a new all-sky catalog with 256 star-forming complexes (SFCs) to build a sample of 191 SFC-GMC complexes—collections of multiple clouds each matched to 191 SFCs. The total mass in stars harbored by these clouds is inferred from WMAP free-free fluxes. We measure the GMC mass, the virial parameter, the star formation efficiency ɛ and the star formation rate per freefall time ɛ ff. Both ɛ and ɛ ff range over 3-4 orders of magnitude. We find that 68.3% of the clouds fall within {σ }{logɛ }=0.79+/- 0.22 {dex} and {σ }{log{ɛ }{ff}}=0.91+/- 0.22 {dex} about the median. Compared to these observed scatters, a simple model with a time-independent ɛ ff that depends on the host GMC properties predicts {σ }{log{ɛ }{ff}}=0.12{--}0.24. Allowing for a time-variable ɛ ff, we can recover the large dispersion in the rate of star formation. This strongly suggests that star formation in the Milky Way is a dynamic process on GMC scales. We also show that the surface star formation rate profile of the Milky Way correlates well with the molecular gas surface density profile.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2016
- DOI:
- 10.3847/1538-4357/833/2/229
- arXiv:
- arXiv:1608.05415
- Bibcode:
- 2016ApJ...833..229L
- Keywords:
-
- galaxies: star formation;
- ISM: clouds;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- accepted to ApJ