The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Continuum Number Counts, Resolved 1.2 mm Extragalactic Background, and Properties of the Faintest Dusty Star-forming Galaxies
Abstract
We present an analysis of a deep (1σ = 13 μJy) cosmological 1.2 mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin2 covered by ASPECS we detect nine sources at \gt 3.5σ significance at 1.2 mm. Our ALMA-selected sample has a median redshift of z=1.6+/- 0.4, with only one galaxy detected at z > 2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cutoff and similar frequencies. Most galaxies have specific star formation rates (SFRs) similar to that of main-sequence galaxies at the same epoch, and we find median values of stellar mass and SFRs of 4.0× {10}10 {M}⊙ and ∼ 40 {M}⊙ yr-1, respectively. Using the dust emission as a tracer for the interstellar medium (ISM) mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from ∼0.1 to 1.0. As noted by previous studies, these values are lower than those using CO-based ISM estimates by a factor of ∼2. The 1 mm number counts (corrected for fidelity and completeness) are in agreement with previous studies that were typically restricted to brighter sources. With our individual detections only, we recover 55% ± 4% of the extragalactic background light (EBL) at 1.2 mm measured by the Planck satellite, and we recover 80% ± 7% of this EBL if we include the bright end of the number counts and additional detections from stacking. The stacked contribution is dominated by galaxies at z∼ 1{--}2, with stellar masses of (1-3) × 1010 M {}⊙ . For the first time, we are able to characterize the population of galaxies that dominate the EBL at 1.2 mm.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2016
- DOI:
- arXiv:
- arXiv:1607.06769
- Bibcode:
- 2016ApJ...833...68A
- Keywords:
-
- galaxies: evolution;
- galaxies: ISM;
- galaxies: star formation;
- galaxies: statistics;
- instrumentation: interferometers;
- submillimeter: galaxies;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication on the Astrophysical Journal