The Stellar Population Structure of the Galactic Disk
Abstract
The spatial structure of stellar populations with different chemical abundances in the Milky Way (MW) contains a wealth of information on Galactic evolution over cosmic time. We use data on 14,699 red-clump stars from the APOGEE survey, covering 4 {kpc}≲ R≲ 15 {kpc}, to determine the structure of mono-abundance populations (MAPs)—stars in narrow bins in [α /{Fe}] and [{Fe}/{{H}}]—accounting for the complex effects of the APOGEE selection function and the spatially variable dust obscuration. We determine that all MAPs with enhanced [α /{Fe}] are centrally concentrated and are well-described as exponentials with a scale length of 2.2+/- 0.2 {kpc} over the whole radial range of the disk. We discover that the surface-density profiles of low-[α /{Fe}] MAPs are complex: they do not monotonically decrease outwards, but rather display a peak radius ranging from ≈ 5 to ≈ 13 {kpc} at low [{Fe}/{{H}}]. The extensive radial coverage of the data allows us to measure radial trends in the thickness of each MAP. While high-[α /{Fe}] MAPs have constant scale heights, low-[α /{Fe}] MAPs flare. We confirm, now with high-precision abundances, previous results that each MAP contains only a single vertical scale height and that low-[{Fe}/{{H}}], low-[α /{Fe}] and high-[{Fe}/{{H}}], high-[α /{Fe}] MAPs have intermediate ({h}Z≈ 300{--}600 {pc}) scale heights that smoothly bridge the traditional thin- and thick-disk divide. That the high-[α /{Fe}], thick disk components do not flare is strong evidence against their thickness being caused by radial migration. The correspondence between the radial structure and chemical-enrichment age of stellar populations is clear confirmation of the inside-out growth of galactic disks. The details of these relations will constrain the variety of physical conditions under which stars form throughout the MW disk.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2016
- DOI:
- 10.3847/0004-637X/823/1/30
- arXiv:
- arXiv:1509.05796
- Bibcode:
- 2016ApJ...823...30B
- Keywords:
-
- Galaxy: abundances;
- Galaxy: disk;
- Galaxy: evolution;
- Galaxy: formation;
- Galaxy: fundamental parameters;
- Galaxy: structure;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Code available at https://github.com/jobovy/apogee-maps