Magnetic and Ferroelectric Anisotropy in Multiferroic FeVO4
Abstract
FeVO4 has been studied as a model system for understanding the magnetoelectric interaction mechanisms in low symmetry multiferroics. Triclinic FeVO4 is characterized by two antiferromagnetic phase transitions, occurring at TN 1 = 22 K and TN 2 = 15 K, with the latter transition signaling a break in the space inversion symmetry, accompanied by the development of a non-collinear magnetic order which induces ferroelectricity. Earlier measurements on polycrystalline FeVO4 doped with magnetic (Cr and Mn) as well as non magnetic (Zn) dopants indicate the stability of the two antiferromagnetic transition temperatures. In this work, single crystals of both undoped and doped FeVO4 were grown from flux. To track the changes in lattice parameters induced by changing the doping concentration (measured by EDAX), XRD and Raman spectra were obtained. By recording the magnetization along two different crystal orientations, we were able to confirm the easy magnetic axis in this structure. Finally, we obtain the crystal's ferroelectric polarization along two different directions in an attempt to further understand the mechanism responsible for the ferroelectric transition.
This work is supported by the NSF under DMR-1306449.- Publication:
-
APS March Meeting Abstracts
- Pub Date:
- 2016
- Bibcode:
- 2016APS..MAR.T1079A