Universal, non-monotonic structure in the saturation curves of a linear Paul trap
Abstract
A common technique to measure ion-atom collision rates in a hybrid trap if the ions have no optical transitions (e.g. alkalis) is to monitor the fluorescence of the neutrals in the presence of a saturated linear Paul trap (LPT). We present numerical simulations, analytical calculations, and experimental results that show that the steady-state ion capacity of an LPT, Ns, exhibits nonlinear, nonmonotonic behavior as a function of ion loading rate, Λ. The steady state as a function of loading rate, Ns(Λ) , shows four distinct regions. In Region I, at the lowest Λ, Ns(Λ) increases monotonically. Then, Ns(Λ) reaches a plateau in Region II, before decreasing to a local minimum in Region III. Finally, in Region IV, Ns(Λ) once again increases monotonically. This behavior appears universal to any Paul trap, regardless of geometry or species trapped. We examine this behavior experimentally as a function of the q stability parameter of the Paul trap and simulate numerically the effect of the particular trap geometry on the onset of each of the four regions.
Funding from NSF Grant PHY-1307874.- Publication:
-
APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts
- Pub Date:
- May 2016
- Bibcode:
- 2016APS..DMP.P6006W