Particle-in-cell Simulations of Waves in a Plasma Described by Kappa Velocity Distribution as Observed in the Saturńs Magnetosphere
Abstract
Observations have shown that several regions in space plasmas exhibit non-Maxwellian distributions with high energy superthermal tails. Kappa velocity distribution functions can describe many of these regions and have been used since the 60's. They suit well to represent superthermal tails in solar wind as well as to obtain plasma parameters of plasma within planetary magnetospheres. A set of initial velocities following kappa distribution functions is used in KEMPO1 particle simulation code to analyze the normal modes of wave propagation. Initial conditions are determined using observed characteristics for Saturńs magnetosphere. Two electron species with different temperatures and densities and ions as a third species are used. Each electron population is described by a different kappa index. Particular attention is given to perpendicular propagation, Bernstein modes, and parallel propagation, Langmuir and electron-acoustic modes. The dispersion relation for the Bernstein modes is strongly influenced by the shape of the velocity distribution and consequently by the value of kappa index. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMSM51F2566A
- Keywords:
-
- 2723 Magnetic reconnection;
- MAGNETOSPHERIC PHYSICSDE: 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICSDE: 2772 Plasma waves and instabilities;
- MAGNETOSPHERIC PHYSICSDE: 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS