Climatic variability in sclerochronological records from the northern North Sea
Abstract
Highly resolved palaeoreconstructions that can extend instrumental records back through time is a fundament for our understanding of a climate of the last millennia. Only a few established extratropical marine paleo archives enable the reconstruction of key ocean processes at annual to sub-annual time scales. Bivalves have been shown to provide a useful archive with high temporal resolution. The species Arctica islandica is unique proxy due to its exceptional longevity combined with sensitivity to changes in environmental conditions. In this study, we investigate the impact of climate variability on sclerochronological records of A. islandica from the Viking Bank in the northern North Sea. The hydrographical characteristics of this location are mainly controlled by the major inflow of Atlantic water in the North Sea and can potentially be reflected in the shell composition and growth of A. islandica. To reconstruct environment conditions, we use shells of living and subfossil specimens of A. islandica collected by dredging at depths around 100 meters. The annual growth bands within the shells were determined and growth increments widths were measured. By cross-matching 30 individual increment-width time series, we built an absolutely dated 265-year long shell-growth chronology spanning the time interval 1748-2013 AD. The relatively high Rbar (>0.5) and EPS (>0.85) values indicate a common environmental forcing on the shell growth within the population. The growth chronology preserves a 20-30 yr variability prior to 1900 which fades out towards the present. That change suggests a possible regime shift at the beginning of a 20th century. Ongoing work mainly focuses on comparing the shell-growth chronology with existing observational time series of climatic parameters to determine controlling factors and test the use of growth chronologies for climate reconstruction in this area. For reconstructing seasonality, we analyse the stable oxygen isotope composition of the shell carbonate. Preliminary results of temperature reconstruction are in agreement with observations and show a seasonal variability with an amplitude of less than 4oC. Future work includes the development of an annually resolved oxygen isotope record and subsequent temperature reconstruction.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMPP41C2286T
- Keywords:
-
- 3305 Climate change and variability;
- ATMOSPHERIC PROCESSESDE: 1620 Climate dynamics;
- GLOBAL CHANGEDE: 1630 Impacts of global change;
- GLOBAL CHANGEDE: 4928 Global climate models;
- PALEOCEANOGRAPHY