Identifying Alteration and Water on MT. Baker, WA with Geophysics: Implications for Volcanic Landslide Hazards
Abstract
Helicopter magnetic and electromagnetic (HEM) data, along with rock property measurements, local ground-based gravity, time domain electromagnetic (TEM) and nuclear magnetic resonance (NMR) data help identify alteration and water-saturated zones on Mount Baker, Washington. Hydrothermally altered rocks, particularly if water-saturated, can weaken volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. At Mount Baker volcano, collapses of hydrothermally altered rocks from the edifice have generated numerous debris flows that constitute their greatest volcanic hazards. Critical to quantifying this hazard is knowledge of the three-dimensional distribution of pervasively altered rock, shallow groundwater and ice that plays an important role in transforming debris avalanches to far traveled lahars. The helicopter geophysical data, combined with geological mapping and rock property measurements, indicate the presence of localized zones of less than 100 m thickness of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. New stochastic inversions of the HEM data indicate variations in resistivity in inferred perched aquifers—distinguishing between fresh and saline waters, possibly indicating the influence of nearby alteration and/or hydrothermal systems on water quality. The new stochastic results better resolve ice thickness than previous inversions, and also provide important estimates of uncertainty on ice thickness and other parameters. New gravity data will help constrain the thickness of the ice and alteration. Nuclear magnetic resonance data indicate that the hydrothermal clays contain 50% water with no evidence for water beneath the ice. The HEM data identify water-saturated fresh volcanic rocks from the surface to the detection limit ( 100 m) over the entire summit of Mt. Baker. Localized time domain EM soundings indicate that low resistivity layers extend at least to 250 m below the surface. The combined geophysical identification of groundwater and weak layers constrain landslide hazards assessments.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMNS21C..08F
- Keywords:
-
- 0910 Data processing;
- EXPLORATION GEOPHYSICSDE: 0994 Instruments and techniques;
- EXPLORATION GEOPHYSICSDE: 1829 Groundwater hydrology;
- HYDROLOGYDE: 4333 Disaster risk analysis and assessment;
- NATURAL HAZARDS