The assessment of seismic hazard for Gori, (Georgia) and preliminary studies of seismic microzonation
Abstract
Seismic risk is a crucial issue for South Caucasus, which is the main gateway between Asia and Europe. The goal of this work is to propose new methods and criteria for defining an overall approach aimed at assessing and mitigating seismic risk in Georgia. In this reguard seismic microzonation represents a highly useful tool for seismic risk assessmentin land management, for design of buildings or structures and for emergency planning.Seismic microzonation assessment of local seismic hazard,which is a component of seismicity resulting from specific local characteristics which cause local amplification and soil instability, through identification of zones with seismically homogeneous behavior. This paper presents the results of preliminary study of seismic microzonation of Gori, Georgia. Gori is and is located in the Shida Kartli region and on both sides of Liachvi and Mtkvari rivers, with area of about 135 km2around the Gori fortress. Gori is located in Achara-Trialeti fold-thrust belt, that is tectonically unstable. Half of all earthquakes in Gori area with magnitude M≥3.5 have happened along this fault zone and on basis of damage caused by previous earthquakes, this territory show the highest level of risk (the maximum value of direct losses) in central part of the town. The seismic microzonation map of level 1 for Gori was carried out using: 1) Already available data (i.e., topographic map and boreholes data), 2) Results of new geological surveys and 3) Geophysical measurements (i.e., MASW and noise measurements processed with HVSR technique). Our preliminary results highlight the presence of both stable zones susceptible to local amplifications and unstable zones susceptible to geological instability. Our results are directed to establish set of actions aimed at risk mitigation before initial onset of emergency, and to management of the emergency once the seismic event has occurred. The products obtained, will contain the basic elements of an integrated system aimed at reducing risk and improving over all safety of people and infrastructure in Georgia.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMNH11A1711G
- Keywords:
-
- 1211 Non-tectonic deformation;
- GEODESY AND GRAVITYDE: 1803 Anthropogenic effects;
- HYDROLOGYDE: 4325 Megacities and urban environment;
- NATURAL HAZARDSDE: 7212 Earthquake ground motions and engineering seismology;
- SEISMOLOGY