New Elastic Moduli for Amphiboles and Feldspars: Impact on Interpretations of Seismic Velocities
Abstract
Seismic properties (both isotropic and anisotropic) of the crust and upper mantle require re-evaluation in light of improved single crystal properties for feldspars and amphiboles as a function of elemental partitioning. Together these minerals constitute more than half of the crust and are locally important in the lithospheric mantle. Their contribution in understanding seismic structures (both in the crust and mantle) has long been recognized. However, published single crystal elastic moduli, required in predictions of seismic velocities based on mineral properties, have remained inadequate for over 50 years. For example, the contribution of amphiboles to seismic velocities has often been approximated on the basis of the reported moduli for two hornblende crystals of unknown composition. New measurements now accurately characterize the plagioclase feldspars, the potassium feldspars, and the calcium and calcium-sodium amphiboles (including a range of compositions for common hornblende). The new moduli allow successful predictions of rock velocities with and without crystal preferred orientations. In contrast, the older moduli required inappropriate use of the Voigt upper aggregate bound in order to rationalize laboratory measurements. These minerals are also more anisotropic than suggested on the basis of the earlier work where cracks and open cleavage surfaces may have artificially depressed the apparent anisotropy. Both feldspars and amphiboles are nearly as anisotropic as sheet silicates with compressional velocity anisotropy of greater than 50%. The plagioclase feldspars show strong compositional trends with small discontinuities between minor structural transitions. In contrast, potassium substitution for sodium and differences in aluminum ordering have little impact on elastic moduli. In the amphiboles, elastic properties are strongly dependent on total aluminum and iron composition. The bulk modulus is most sensitive to aluminum and the shear modulus is more sensitive to iron. Variations in Poisson's ratio (which depends on the ratio of isotropic compressional and shear wave velocities) associated with compositions within the amphiboles and the feldspars are larger than previously predicted. The extent of modifications to seismic interpretations is evaluated.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFMMR23A2664B
- Keywords:
-
- 3909 Elasticity and anelasticity;
- MINERAL PHYSICSDE: 3924 High-pressure behavior;
- MINERAL PHYSICSDE: 5120 Plasticity;
- diffusion;
- and creep;
- PHYSICAL PROPERTIES OF ROCKSDE: 5430 Interiors;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS