New Finite-Frequency Teleseismic P-wave Tomography of the Anatolian Sub-continent and the Fate of the Subducted Cyprean Slab
Abstract
The eastern Mediterranean region is characterized by active subduction of Tethyan lithosphere beneath the Anatolian sub-continent at the Aegean and Cyprean trenches. The subduction system is historically characterized by slab roll-back, detachment, and slab settling in the mantle transition zone. Prior mantle tomography studies reveal segmentation of the subducted Tethyan lithosphere, which is thought to have a strong control on surface volcanism and uplift across Anatolia. However, tomographic resolution, particularly in central Anatolia, has been limited, thus making detailed delineations of the subducted slab segments difficult. To improve resolution, we combine two years of seismic data from the recent Continental Dynamics - Central Anatolia Tectonics (CD-CAT) seismic deployment and Turkey's national seismic network ( 33,000 residuals) to 33,000 travel time residuals from Biryol et al. (2011, GJI) in a new finite-frequency teleseismic P-wave tomographic inversion. Our new images reveal with detail a complicated geometry of fast velocity anomalies associated with subducted Tethyan lithosphere. At shallow depths, slow velocities separate the fast anomalies connected to the Aegean and Cyprean trenches. The fast anomaly connected to the Cyprean trench has an arcuate shape in map view, following the trace of the Central Taurus Mountains. This anomaly is separated from a high-amplitude block to the north that appears to dip sub-vertically throughout the upper mantle (200-660 km depth). Other blocks of fast material that may represent subducted Tethyan lithosphere appear down-dip of the vertical block. Additionally, our images indicate that some of the fast velocity anomalies previously seen to flatten in the mantle transition zone may continue into the lower mantle. Thus, our new images provide a more detailed picture of the fate of the Cyprean slab and suggest that some of the fast anomalies associated with the slab continue into the lower mantle, bringing to question the traditional view of a slab graveyard in the mantle transition zone in this region.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T54A..04P
- Keywords:
-
- 8104 Continental margins: convergent;
- TECTONOPHYSICSDE: 8120 Dynamics of lithosphere and mantle: general;
- TECTONOPHYSICSDE: 8150 Plate boundary: general;
- TECTONOPHYSICSDE: 8175 Tectonics and landscape evolution;
- TECTONOPHYSICS