Seasonal crustal seismic velocity changes in Japan from noise-based monitoring
Abstract
The general framework of this work is to study how environmental seasonal perturbations impact the solid Earth in an active tectonic region. For this purpose we continuously monitor crustal seismic velocity changes using noise-based monitoring over the entire Japan. We perform a massive data analysis of the continuous seismic records of the very dense Hi-net short-period network (800 stations) from 2008 to 2012. When mapping seasonal velocity changes over the entire Japan we find large anomalies in the southern Kyushu island and in the Northern Hokkaido island. Transient seasonal crustal drops of seismic velocity in Kyushu are well explained by a model of pore pressure increase induced by heavy precipitation in summer during typhoon period. The other large seasonal anomaly located in Eastern Hokkaido (North Japan) shows both an effect of increased pore pressure during precipitation in summer (velocity decrease) and of closure of crustal cracks in winter (velocity increase) explained by both the effects of snow loading and pore pressure decrease by water drainage. The response of the crust in western Japan (Hokkaido and Honshu) is more enigmatic as it shows a very small sensitivity to both precipitation and snow loads effects. Finally, we show how better understanding these environmentally induced crustal perturbations improves our observations of tectonic-induced seismic property changes in the special case of the M9, 2011, Tohoku-Oki earthquake.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T53A..07W
- Keywords:
-
- 1217 Time variable gravity;
- GEODESY AND GRAVITYDE: 1219 Gravity anomalies and Earth structure;
- GEODESY AND GRAVITYDE: 7209 Earthquake dynamics;
- SEISMOLOGYDE: 7215 Earthquake source observations;
- SEISMOLOGY