The Possible Decapitation of a Megathrust Indenter: Evidence from Imaging of Time-dependent Microseismic Structures before and after the 2012 Mw 7.6 Nicoya, Costa Rica
Abstract
We normally view the subduction megathrust surface as a constant structure throughout the seismic cycle, with the elastic loading, microseismicity, and slip occurring along it. However, using small events recorded from a uniquely dense seismic network directly over the active megathrust below Nicoya, Costa Rica, we find two different seismogenic structures with near exclusive time-dependent behavior immediately in the region of maximum coseismic slip. Microseismicity recorded at intervals between 1999 and 2009 showed an elevated topographic indenter beneath central Nicoya, and associated with a suture marking transition between Cocos-Nazca Spreading Center and East-Pacific Rise crusts [Kyriakopoulos et al., JGR 2015]. This indenter is located as a focus of interseismic locking and coseismic rupture [Feng et al., JGR 2012; Yue et al., JGR 2013; Protti et al., Nat. Geosc. 2014; Xue et al., JGR 2015; Kyriakopoulos & Newman, JGR 2016]. However, aftershocks recorded in the months following an MW 7.6 earthquake in 2012 define an entirely different structure about 5 km deeper and differing only in the area of maximum coseismic slip. The location of seismicity switches entirely between these faults from the shallow indenter structure beforehand to the deeper and near-linear feature after. To improve our imaging of the behavior and associated slab structure, we perform a detailed joint seismic relocation and tomographic inversion using TomoDD [Zhang and Thurber, PAGEOPH 2003]. We analyze the new locations relative to the imaged slab geometry, and compare automated formulations of the interfaces using the Maximum Seismicity Method [Kyriakopoulos et al., 2015], with data existing before and after the earthquake. Lastly, we show the sensitivity of using either surface in models for fault slip from regional GPS. We hypothesize that the bifurcated fault structure signifies either active decapitation of the indenter, possibly along the crust-mantle interface of the downgoing slab, or aftershock activity represents the true plate interface, with prior seismic activity dominantly in the hanging wall along a well-defined fault. Either case has implications for understanding the relationship between interseismic and coseismic fault behavior through the seismic cycle.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T53A..01N
- Keywords:
-
- 1217 Time variable gravity;
- GEODESY AND GRAVITYDE: 1219 Gravity anomalies and Earth structure;
- GEODESY AND GRAVITYDE: 7209 Earthquake dynamics;
- SEISMOLOGYDE: 7215 Earthquake source observations;
- SEISMOLOGY