Geodynamic Models of Plume-Ridge Interaction in the Indian Ocean and its Effect on the Crustal Thickness of the Réunion Hotspot Track
Abstract
The Réunion mantle plume had a first impact on the Earth's surface when the plume head approached the base of the lithosphere around 67 million years ago and the first vigorous volcanic eruptions created the Deccan Traps in India, one of the largest flood basalt provinces in the world. During this period, the Indian plate may have been accelerated by the uprising plume head, leading to a northeastward plate motion with a unique velocity of up to 18 cm/year. The hotspot track, generally considered to be created by the plume tail impinging on the moving plates, comprises the volcanic chains of the Laccadives, Maldives and Chagos on the Indian plate and the Southern Mascarene Plateau on the African plate. It has been divided by seafloor spreading, since the Central Indian Ridge has passed over the plume approximately 50 million years ago, leading to intensive and continuing plume-ridge interaction. Considering the whole geodynamic history of the plume up to its currently active position underneath the island of Réunion, we set up three-dimensional regional convection models of the upper mantle using the mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). In order to study this specific plume, we prescribe the global flow field from a coarser global model at the side boundaries and bottom of the box model and the reconstructed tectonic plate velocities at the uppermost 200 km while a plume inflow is enforced at the bottom. Furthermore, we extended the code to import varying lithosphere thickness values at the side boundaries to compare realistic lithosphere models with simple constant lithosphere thickness models. Finally, we compare the amount and pattern of the resulting crustal thickness produced by the plume with present-day topographic maps to constrain plume properties such as the excess temperature and buoyancy flux. Special focus is placed on how the ridge geometry helps generating the distinctive gap in the hotspot track between Chagos and the Maldives and on the origin of the Rodriguez Ridge, a volcanic lineament between the plume and the Central Indian Ridge, which has been suggested to be a sub-lithosphere melt channel by Morgan already in 1978 and can be observed in our models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.T13C2734B
- Keywords:
-
- 1025 Composition of the mantle;
- GEOCHEMISTRYDE: 7218 Lithosphere;
- SEISMOLOGYDE: 8110 Continental tectonics: general;
- TECTONOPHYSICSDE: 8120 Dynamics of lithosphere and mantle: general;
- TECTONOPHYSICS